Transformed Pseudo-Random Patterns for BIST - VLSI Test Symposium, 1995. Proceedings., 13th IEEE

نویسندگان

  • Nur A. Touba
  • Edward J. McCluskey
چکیده

This paper presents a new approach for on-chip test pattern generation. The set of test patterns generated by a pseudo-random pattern generator (e.g., an LFSR) is transformed into a new set of patterns that provides the desired fault coverage. The trang5ormation is performed by a small amount of mapping logic that decodes sets of patterns that don't detect any new faults and maps them into patterns that detect the hard-to-detect faults. The mapping iogic is purely combinational and is placed between the pseudo-random pattern generator and the circuit under test (CUT). A procedure for designing the mapping logic so that it satisfies test length and fault coverage requirements is described. Results are shown for benchmark circuits which indicate that an LFSR plus a small amount of mapping logic reduces the test length required for a particular fault coverage by orders of magnitude compared with using an LFSR alone. These results are compared with previously published results for other methods, and it is shown that the proposed method requires much less overhead to achieve the same fault coverage for the same test length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SYNTHESIS OF MAPPING LOGIC FOR GENERATING TRANSFORMED PSEUDO-RANDOM PATTERNS FOR BIST - Test Conference, 1995. Proceedings., International

During built-in self-test (BIST), the set of patterns generated by a pseudo-random pattern generator may not provide a sufficiently high fault coverage. This paper presents a new technique for synthesizing combinational mapping logic to transform the set of patterns that are generated. The goal is to satisfy test length and fault coverage requirements while minimizing area overhead. For a given...

متن کامل

Synthesis of Mapping Logic for Generating Transformed Pseudo-Random Patterns for BIST

During built-in self-test (BIST), the set of patterns generated by a pseudo-random pattern generator may not provide a sufficiently high fault coverage. This paper presents a new technique for synthesizing combinational mapping logic to transform the set of patterns that are generated. The goal is to satisfy test length and fault coverage requirements while minimizing area overhead. For a given...

متن کامل

Transformed pseudo-random patterns for BIST

This paper presents a new approach for on-chip test pattern generation. The set of test patterns generated by a pseudo-random pattern generator (e.g., an LFSR) is transformed into a new set of patterns that provides the desired fault coverage. The transformation is performed by a small amount of mapping logic that decodes sets of patterns that don’t detect any new faults and maps them into patt...

متن کامل

Strategies and Techniques for Optimizing Power in BIST: A Review

Power dissipation is a challenging problem in current VLSI designs. In general the power consumption of device is more in the testing mode than in the normal system operation. Built in self test (BIST) and scan-based BIST are the techniques used for testing and detecting the faulty components in the VLSI circuit. Linear Feedback Shift Register (LFSR) in BIST generates pseudo-random patterns for...

متن کامل

Circular BIST with state skipping

Circular built-in self-test (BIST) is a “test per clock” scheme that offers many advantages compared with conventional BIST approaches in terms of low area overhead, simple control logic, and easy insertion. However, it has seen limited use because it does not reliably provide high fault coverage. This paper presents a systematic approach for achieving high fault coverage with circular BIST. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995